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Abstract
We determine the effects of nonlocal, nonlinear interactions on the excitation
spectrum of lattice quantum field scalar models. We consider perturbations
of a quantized discrete string formally self-adjoint Hamiltonian operator on
the lattice Z

d , and with a large mass coefficient for the quadratic term.
The low-lying energy–momentum spectrum has an isolated dispersion curve
and a two-particle (first) band. We analyse a ladder approximation of the
Bethe–Salpeter equation on the lattice, for a weak perturbation of the type∑

�x∈Z
d [λ6 : ϕ(�x)6 : +V (ϕ(�x)], λ6 > 0, and consider the spectral interval

starting at zero and extending to near the three-particle threshold. For space
dimension d = 1, 2 and V (ϕ(�x)) = λ1 : ϕ(�x)4 :, we find that a bound
state occurs either below (if λ1 < 0) or above the first band (if λ1 > 0), but
not both. This agrees with recent results where bound states were obtained
for the stochastic dynamics generator associated with the relaxation rate
to equilibrium in weakly coupled stochastic Ginzburg–Landau models with
continuous time and on a spatial lattice Z

d . These results are in contrast,
however, with those obtained for V (ϕ(�x)) = λ2 : ϕ(�x)3(−�ϕ)(�x) :. For this
case, surprisingly, we show that stable particles exist simultaneously above and
below the band, for d = 1, 2, regardless of the sign of the coupling λ2. If
V (ϕ(�x)) = λ3 : ϕ(�x)2(−�ϕ2)(�x) :, the ladder analysis is inconclusive. If
d = 3, 4, . . . , no bound states exist in the spectral region we consider.

PACS numbers: 02.50.−r, 02.30.Tb, 05.50.+q, 11.10.St, 02.30.Tb

1. Introduction

The analysis of systems governed by stochastic dynamics is of physical and purely
mathematical interest. In physics, these systems are worth studying for several reasons, e.g.,
because some classes of stochastic models can be used to describe the evolution of an order
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parameter in statistical mechanical systems [1, 2]. In these cases, as a consequence of the
spectral theorem, determining the excitation spectrum of the stochastic dynamics generator
gives information about the relaxation rate to equilibrium.

Recently, much attention has been devoted to understanding the quasi-particle or spectral
structure of the stochastic dynamics generator in lattice models [3–7]. In these works, the
picture of a massive particle and a bound state below the two-particle threshold (the bottom
of the first, two-particle, band) is established, depending on the space dimension d, and on
specific conditions on the interaction. Later, concentrating on weakly coupled stochastic
Ginzburg–Landau (G–L) models defined on the spatial lattice Z

d and with continuous time,
the work in [6, 7] was furthered in [8] where it is established, in the ladder approximation,
that a stable particle may also exist above the top of the first band, with a concave dispersion
for small momentum, for d = 1, 2. This is in contrast with the previous works where the
dispersion is convex for the stable particle below the band, when it is present.

The analysis in [6–8] concentrates on the spectrum for the stochastic dynamics generator
in an interval that starts at zero and goes up to near the three-particle threshold. It is based on
solving the Bethe–Salpeter (B–S) equation, after applying a Feynman–Kac formula to map the
problem into the problem of analysing correlations of an associated massive imaginary-time
scalar quantum field theory on the spatial lattice.

Regarding the spectral (bound state) analysis up to near the three-particle threshold, there
are four main points that make the stochastic G–L models different from relativistic Euclidean
quantum field theories that were studied long ago in e.g. [9–11] (see also [12]). Firstly,
because of the underlying stochastic character of the problem (see (1)) with the G–L action
(see (2)), besides the usual local interactions, the associated scalar quantum field theory also
presents mildly nonlocal interactions of the type λ : P ′(ϕ)(−� + m2/2)ϕ : where λ is the
coupling constant, P (ϕ) an even polynomial starting with ϕ4, � the Z

d -lattice Laplacian,
m a mass parameter which is taken to be large to ensure the existence of the infinite-lattice
dynamic correlation functions, and : : denotes a Wick ordering (see below). Secondly, the B–S
kernel corresponds to a rank-2 operator on a convenient space while for an Euclidean local
quantum field theory the rank is 1. Thirdly, it is appropriate to observe that the use of relative
‘mixed coordinates’ is a technical point that plays an important role in the whole analysis of
the stochastic lattice G–L model. Replacing the commonly used relative and centre of mass
coordinates for the models on the continuum, they are given by a relative centre of mass time
coordinate and by relative coordinates for the space lattice. Finally, we remark that the first
band in massive field theories on the continuum extends to infinity since for a system with two
identical particles and with fixed centre of mass momentum �p = �p1 + �p2 the energy varies
from 2[ �p2/4 + m2]1/2 to infinity where m is the rest mass of each particle. Thus, there is no
band structure like the one found in [6–8] for the lattice stochastic model.

Some natural questions arise from this analysis. First, one should try to find a good
description of the physical properties of the particle described in [8]. Second, one should try
to understand better by what mechanism they can arise in stochastic models. Third, since
the rank of the B–S operator is 2, one could expect to have two stable particles existing
simultaneously. One should then try to find out whether or not this occurs, and give conditions
for the two spectral points to coexist.

This paper addresses these questions. In section 2, we make our motivation more concrete
and establish the framework and tools used for the bound state analysis in this paper, by
describing the lattice stochastic G–L models and summarizing the results of [6–8].

We go beyond the analysis of [6–8] and show that the lowest power nonlocal interaction
λ : ϕ3(−� + m2/2)ϕ : gives rise to a rank-2 B–S operator. The two bound states, above and
below the two-particle band, as described in [8] exist only if the space dimension is d = 1, 2,
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and under a complementary assumption on the interaction. This assumption is related to the
sign of the quartic interacting term (see (3)), which is governed by a coefficient denoted by a2.
For d = 1, 2 the bound state below the band exists for a2 < 0 while the one above the band
exists for a2 > 0. Since the value of the free single mass m2/2 is taken large, and momenta
are bounded on the infinite lattice, with values in [−π, π]d , for both cases the nonlocal term
λ : ϕ3(−�)ϕ : is overshadowed by the local λ m2/2 : ϕ4 : term.

In section 3, this point is made clear by solving the ladder approximation of the B–S
equation for a lattice λ1 : ϕ4 : local scalar model associated with a discrete nonlinear quantized
vibrating string. The ladder approximation consists in keeping only order λ1 terms in the B–S
kernel. Here, the rank of the B–S operator is 1 and for small λ1, depending on its sign, we
find a bound state above the first band (λ1 > 0) or a bound state below (λ1 < 0), but not both.

Next, we consider some simple nonlinear, nonlocal interactions which are nearest-
neighbour. In the derivation of the stochastic dynamics generator for the lattice G–L model,
local and nonlocal terms are present together and are constrained, having fixed relations among
each other. In order to simplify our study, we do not take a more complicated combination
of interaction terms, as occurs in the stochastic lattice G–L case. We thus consider separately
several nonlocal interactions, so that we can understand the effect of each of them on stable
state production. Higher power terms, which do not contribute to the B–S equation to the
order we consider, are added to the interaction in order to have local stability of the interacting
potential. It is important to stress, however, that our analysis can be extended to other finite-
range or suitably decaying infinite-range nonlocalities, and more general nonlinearities. Also,
throughout this paper, we use the ladder approximation for large m and for small λ.

In all cases, if d � 3, bound states below or above the band, up to near the three-particle
threshold, do not occur. On the other hand, for d = 1, 2, it is shown that a nonlocal term of the
type λ2 :ϕ3(−�)ϕ :, if present alone and for any sign of λ2, surprisingly enough indeed gives
rise to two coexisting bound states near the two-particle band, one below and the other above
the band. If a symmetrical term λ3 : ϕ2(−�)ϕ2 : is considered, the ladder approximation is
inconclusive and higher order terms in λ3 have to be taken into account.

We make some concluding remarks in section 4. We point out that the questions that are
considered in this paper also arise in other contexts, for example, in the large time asymptotics
of solutions of nonlinear classical wave equations. There is also the question of the existence
of soliton and soliton–antisoliton type solutions when nonlocal nonlinearities occur. Nonlocal,
nonlinear interactions are also present in quantum field theories when there is more than one
field and functional integration over one of them is performed. This happens, for example, in
Yukawa, QED, QCD or the Gross–Neveu model with an ultralocal field.

2. The lattice stochastic G–L model

In this section, we establish the framework for the bound state analysis for lattice models. We
define the lattice stochastic G–L systems, review the results of [6–8] and define the main tools
that will be used in the rest of the paper. These systems are given by the following Langevin
type equation:

∂ϕ

∂t
(t, �x) = −1

2

δ

δϕ(t, �x)A(ϕ(t, �x)) + η(t, �x) ϕ(�x, 0) = ψ(�x) (1)

where, for space coordinates �x ∈ Z
d and time t ∈ R, ϕ(�x) is a set of unbounded real

continuous scalar spin variables, ψ(�x) is some initial condition, A is the system action and
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{η(t, �x)}, �x ∈ Z
d , t ∈ [0,∞) is a family of Gaussian white noise processes with expectations

E(η(t, �x)) = 0 and E(η(t, �x) η(t ′, �y)) = δ(t − t ′)δ�x,�y . The action is of G–L type, i.e.

A(ϕ(�x)) =
∑
�x∈Z

d

{
1

2

[
d∑
i=1

[ϕ(�x + �ei) − ϕ(�x)]2 + m2ϕ(�x)2

]
+ λP(ϕ(�x))

}
. (2)

Here, �ei is the unit vector along the ith coordinate; m > 0 and λ � 0, and P is an even
polynomial of degree 2N , bounded from below and starting with a quartic term, given by

P(ϕ) =
N∑
n=2

an

(2n)!
: ϕ2n : (3)

with aN > 0 and : : meaning Wick order with respect to the covariance

C =
[
− d2

dt2
+ (−� + m2)2

]−1

(4)

where −� is minus the lattice Laplacian (−�ϕ)(�x) = 2dϕ(�x)− ∑
|�x−�y|=1 ϕ(�y).

The dynamics introduced by (1) for the Markov process ϕ(t) = ϕ(t, �x) associates
a Markov semi-group and leaves invariant the Gibbs probability distribution dµ =
e−A(ϕ) dϕ/normalization defined by action (2). The time evolution of any function f of
the spin configuration ϕ(�x) is given by ft (ψ) = E(f (ϕ(t))), with ϕ(t = 0) = ψ(�x). It
follows that ft is determined by the Markov semi-group exp(−tB) with generator B, for
f = f ({ϕ(�x)}), given by

Bf = −1

2

∑
�x∈Z

d

[
δ2

δϕ(�x)2
f − δA

δϕ(�x)
δf

δϕ(�x)
]
.

The spectrum of B is related to decay rates of correlation functions of an imaginary continuous
time space lattice quantum field theory through a Feynman–Kac formula (see [6–8]). Rather
than analysing the spectrum of B, we consider the unitarily equivalent Schrödinger-like
Hamiltonian operator:

H = −1

2

∑
�x∈Z

d

δ2

δϕ(�x)2
+

1

4

∑
�x∈Z

d

[
1

2

(
δA

δϕ(�x)
)2

− δ2A

δϕ(�x)2

]

= − 1

2

∑
�x∈Z

d

δ2

δϕ(�x)2
+

1

8

∑
�x∈Z

d

ϕ(�x)[(−� + m2)2ϕ](�x)

+
λ

4

∑
�x∈Z

d

[(−� + m2)ϕ](�x)P ′(ϕ(�x))

+
∑
�x∈Z

d

[
λ2

8
P ′(ϕ(�x))2 − λ

4
P ′′(ϕ(�x))− (2d + m2)

4

]
.

The lattice translation operator T (�x) = exp [−i �P · �x] commutes with H; H is additively
normalized so that its spectrum is positive and starts at zero. The joint spectrum of H, �P ,
where �P is the self-adjoint momentum operator, is then analysed.

The above infinite-lattice formulae are formal. In [7], it was rigorously shown
how to define them starting from the finite-lattice finite-time models and then taking the
thermodynamic limit using a cluster expansion, assuming m large and λ sufficiently small.
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If λ = 0, the spectrum can be determined exactly; the associated correlation functions
are moments of a Gaussian measure with covariance C given in (4). There is a natural
quasi-particle interpretation for the H, �P spectrum. Spectral points are denoted by (E, �p),
E � 0 and �p ∈ Td ≡ [−π, π]d . The point (E, �0) is referred to as a mass and (0, �0)
is the vacuum. Moreover, we have a quasi-particle energy–momentum (e–m) spectrum
(E0( �p) ≡ Eλ=0( �p), �p) where E0( �p) is the isolated dispersion curve,

E0( �p) =
d∑
i=1

(1 − cospi) + m2/2 �p = (p1, . . . , pd)

with mass m2/2. The rest of the spectrum is given by ∪�p∈Td ∪n�2 (E0,n( �p), �p) with
E0,n( �p) = ∑n

j=1 E0( �pj),
∑n

j=1 �pj = �p, i.e. the e–m spectrum of n non-interacting
quasi-particles with total momentum �p. As the system is defined on a spatial lattice, the
corresponding spectral regions may correspond to spectral bands. When this is the case,
they can be determined by applying, e.g., the Lagrange multiplier method to the function∑n

j=1 E0( �pj),
∑n

j=1 �pj = �p, to compute the upper and lower envelopes. For instance, for

n = 2 and d = 1, the band has lower envelope E
↓
0,2( �p) = 4 sin2(p/4) + m2 and upper

envelopeE↑
0,2( �p) = 4 cos2(p/4) +m2. For sufficiently large m and n � 3, any d, there is also

a band spectrum but, for sufficiently large n, the bands overlap. We are considering the large
m case so that there is at least a first isolated band.

The results of [6–8] concern the weakly interacting case 0 < λ � 1; first, within the ladder
approximation in [6] and then analysing the complete model in [7], controlling perturbations
about the ladder case. If m is fixed large andλ chosen sufficiently small, it is shown that a quasi-
particle persists with dispersion curve Eλ( �p) � Eλ(�0) = m2/2 + O(λ2). The mass spectrum
up to the two-particle threshold mass 2Eλ(�0) is also determined. More precisely, for d = 1, 2
and if a2 < 0, there is a single point Mb in the mass spectrum interval Iλ = (Eλ(�0), 2Eλ(�0)),
located near 2Eλ(�0). The bound state is absent and there is no mass spectrum in Iλ if a2 > 0,
for any d, or for a2 < 0 and d � 3. In [8], the mass spectrum is considered for the interband
region between the first (with envelopesE↓

λ,2( �p) and E↑
λ,2( �p)) and the second (with envelopes

E
↓
λ,3( �p) and E

↑
λ,3( �p)) bands which, because of the weak interaction, are shown to be small

deformations of the λ = 0 bands. In the ladder approximation, and for a2 > 0 and d = 1, 2,
it is shown that there is mass spectrum Ma above and close to the mass of the upper envelope
of the first band. Furthermore, for small | �p|, it is shown in [8] that the associated dispersion
curve for this interband state is concave while that for the bound state below the first band is
convex. The results are depicted in figure 1.

Our method is related to the method in [13, 14] used in the analysis of the continuum
models. As in [13, 14], an associated imaginary continuous time, space lattice quantum field
theory is constructed using standard methods furnishing a Hilbert space H, commuting self-
adjoint e–m operators, time zero field operators and a vacuum vector. Vacuum expectation
values of products of imaginary-time Heisenberg field operators are related to correlation
functions by the Feynman–Kac formula, for x1 ≡ (t1, �x1), . . . and t1 � t2 � t3 · · · � tn,

Sλ(x1; . . . ; xn)≡〈ϕ(x1) · · ·ϕ(xn)〉
= (

*, φ̂ e−(t2−t1)H+i �P ·(�x2−�x1)φ̂ · · · e−(tn−tn−1)H+i �P ·(�xn−�xn−1)φ̂*
)

where 〈 · 〉 corresponds to the average given by a functional integral with a path space measure
dρ = e−W dν∫

e−W dν , with W ≡ W(ϕ) given by

W =
∫ ∞

−∞
dt

∑
�x∈Z

d

[
λ

4
P ′(ϕ(�x, t))(−� + m2)ϕ(�x, t) +

λ2

8
P ′(ϕ(�x, t))2 − λ

4
P ′′(ϕ(�x, t))

]
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Figure 1. The approximate stochastic G–L model e–m spectrum for the case d = 1 and m2 = 16.
For a2 < 0, only the isolated bound state lower dispersion curve appears; for a2 > 0, only the
isolated upper curve appears.

and dν is a normalized Gaussian measure with mean zero and covariance C of (4) with kernel

C(x, y) = C(t, �x; t ′, �y) =
∫

ϕ (t, �x) ϕ(t ′, �y) dν

= 1

(2π)d+1

∫ ∞

−∞
dp0

∫
Td

d �p eip0(t−t ′) ei �p·(�x−�y)

p2
0 +

[
( �p/)2

/
2 + m2/2

]2

where ( �p/)
2 ≡ 2

∑d
i=1(1 − cospi), �p = (p1, . . . , pd) ∈ Td and �p · (�x − �y) =∑d

i=1 p
i(xi − yi).

The above infinite-lattice infinite-time formulae for correlation functions (see [7]) are
controlled by cluster and Mayer expansions, and incorporate the time hyperplane decoupling
expansion developed in [9] that allows us to prove that certain truncated two- and four-
point functions have tree exponential decay with exponents showing the correct two- and
three-particle irreducible behaviour. We observe that these spacetime decay properties imply
analyticity properties in the Fourier space which are used to obtain the spectral results.

In order to analyse the two-particle spectrum, we consider the Fourier transform of
a partially truncated four-point correlation function expressed in terms of mixed relative
coordinates (relative temporal centre of mass coordinates and relative spatial coordinates)
D̃λ(p, q, k), where k = (k0, �k), k0 ∈ R, �k ∈ Td ; and similarly for p and q. Dλ is the solution
of the B–S equation,

Dλ = D0
λ + DλKλD

0
λ

where letting Sλ denote the two-point function for the interacting model, D0
λ(x1, x2, x3, x4) =

Sλ(x1, x3)Sλ(x2, x4) + Sλ(x1, x4)Sλ(x2, x3) and Dλ(x1, x2, x3, x4) = Sλ(x1, x2, x3, x4)−
Sλ(x1, x2)Sλ(x3, x4), and Sλ(x1, x2, x3, x4) is the four-point function.

The mixed relative coordinates are given by

ξ = (
x0

2 − x0
1 , �x2 − �x1

)
η = (

x0
4 − x0

3 , �x4 − �x3
)

(5)
τ = [

1
2

(
x0

3 + x0
4 − x0

1 − x0
2

)
, �x3 − �x2

]
.

By translational invariance, Dλ(x1, x2, x3, x4) = Dλ(0, x2 − x1, x3 − x1, x4 − x1) and, by
abuse of notation, we write the rhs as Dλ(ξ, η, τ ) after expressing it in terms of the mixed
relative coordinates. We proceed similarly for D0

λ and Kλ.
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Using the symmetries of Dλ and D0
λ (hence also of Kλ), namely x1 ↔ x2, x3 ↔ x4,

x1, x2 ↔ x3, x4, x1, x2, x3, x4 ↔ −x1,−x2,−x3,−x4, the B–S equation for D̃(k) is

D̃λ(k) = D̃0
λ(k) + (2π)−2(d+1) D̃λ(k)K̃λ(k)D̃

0
λ(k)

where, e.g., D̃λ(k) is defined by the kernel D̃λ(p, q, k) through

(D̃λ(k)f )(p) =
∫

D̃λ(p, q, k)f (q) dq

and (p, q, k) are the momentum variables conjugate to (ξ, η, τ ). Similar expressions hold for
D̃0

λ and K̃λ.
As in works involving relativistic quantum field theories in the continuum [9–11], recall

from [6–8] that the e–m spectrum associated with the two-particle states occurs as a k0

singularity in the positive imaginary axis of the Fourier transform of Dλ. This is so because,
for any function f : Z

d → C vanishing outside a finite set, a calculation yields

(f, Dλf )(k) =
∫

dp
∫

dqf̃
∗
( �p)D̃λ(p, q, k) f̃ ( �q)

=
∫ ∞

0

∫
Td

2E

(k0)2 + E2
(2π)3d+2 δ( �q − �k) d(θ(f ), E(E, �q)θ(f )) (6)

where E(E, �p) is the spectral family for (H, �P), θ(f ) = ∑
�x∈Zd f (�x)θ(−�x), with θ(�η) =

ϕ̂(�0)ϕ̂(�η)* − (*, ϕ̂(�0)ϕ̂(�η)*)*.
The determination of the spectrum in [6, 7] above the one-particle state and below the

two-particle threshold is restricted to total momentum �k = �0, i.e. only to the mass spectrum.
We write Kλ = (

D0
λ

)−1 − (Dλ)
−1 as Kλ = λL + λ2K

(2)
λ , where λL is called the ladder

approximation to Kλ. The ladder kernel is calculated to be L̃(p, q, k) = − 3
4a2 [E0( �p) +

E0( �q) + E0( �p − �k) + E0( �q − �k)] and has rank 2.
We now obtain an explicit solution for D̃λ(p, q, k) in the ladder approximation. Letting

Sλ denote the two-point function, the kernel of D̃0
λ is given by

D̃0
λ(p, q, k) = (2π)d+1δ(p0 + q0)

[
S̃λ

(
k0

2
− p0, �p

)
S̃λ

(
k0

2
+ p0, �q

)
δ( �p + �q − �k)

+ S̃λ

(
k0

2
+ p0, �p

)
S̃λ

(
k0

2
− p0, �k − �p

)
δ( �p − �q)

]
. (7)

Using one of the symmetry properties above, for �k = �0, we have D̃0
λ(p, q, k

0) =
D̃0

λ(−p, q, k0), and similarly for D̃λ and L̃. For this reason, we consider the B–S equation
only in the space of symmetric functions f (p) = f (−p). Suppressing the k0 dependence, it
reads

D̃λ(p, q) = r0(p)δ(p + q) + λ′r0(q)E0( �q)
∫
D̃λ(p, u) du + λ′r0(q)

∫
D̃λ(p, u)E0(�u) du

(8)

where r0(q) ≡ rλ,0 = 2S̃λ
(
k0

2 − q0, �q)
S̃λ

(
k0

2 + q0, �q)
. In (8), we set λ′ = −3(2π)2(d+1)a2λ/2

and we have used S̃λ(p
0, �p) = S̃λ(p

0,− �p).
Multiplying (8) successively by 1 and E0( �q), integrating over q, and solving the two

resulting equations for X(p) ≡ ∫
D̃(p, u) du and Y (p) ≡ ∫

D̃(p, u)E0(�u) du, we find

D̃(p, q) = r0(p)δ(p + q)− λ′[βγ − (α − 1)2]−1r0(p)r0(q)

× [βE0( �p)E0( �q) + (1 − α) (E0( �p) + E0( �q))− γ ] (9)
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where

α ≡ αλ(k
0) = λ′

∫
Td

E0( �q )G( �q, k0) d �q

β ≡ βλ(k
0) = λ′

∫
Td

G( �q, k0) d �q

γ ≡ γλ(k
0) = λ′

∫
Td

E0( �q )2G( �q, k0) d �q

and

G( �q, k0) =
∫

r0(q) dq0 = 2
∫

S̃λ

(
k0

2
+ q0, �q

)
S̃λ

(
k0

2
− q0, �q

)
dq0. (10)

Now, recalling from [6, 7] that k0 singularities of (6) are points in the e–m spectrum, we
see from (9) that we need to analyse the k0 singularities of α, β and γ . From [6, 7], S̃λ(p) has
the representation

S̃λ(p) = cλ( �p)
(p0)2 + Eλ( �p)2

+
∫ ∞

m2

2E

(p0)2 + E2
dηλ′ (E, �p)

where cλ( �p) = 1 +O(λ2) and dη′ has support on odd states with more than one particle. Then,
performing the q0 integration in (10), we obtain

G( �p, k0) = 2π[cλ( �p)]2 1

Eλ( �p) [(k0)2 + [2Eλ( �p)]2
] + G1( �p, k0).

where G1( �p, k0) is analytic in Im k0 ∈ (0, 3m2/2). Also, from [7], the isolated one-particle
dispersion curve Eλ( �p) behaves as m2/2 + a

∑d
j=1(p

j )2 + O(λ2), with a constant a > 0, for
small | �p|. We thus see that the k0 singularities of α, β and γ lie in the first band.

From (9), we see that the only possible singularities in Im k0 ∈ (0, 2Eλ(�0)) or above the
first band up to near the three-particle threshold come from the zeroes of [βγ − (α − 1)2] ≡
(µ+ − 1)(µ− − 1), for µ±(k0) = λ′ [α(k0)± (β(k0)γ (k0))1/2

]
.

We now take k0 on the positive imaginary axis and let it approach the lower envelope of
the band from below (α, β and γ are positive) to obtain the bound state massMb forµ+(k) = 1,
for a2 < 0 and d = 1, 2. Letting it approach the upper envelope from above (α, β and γ are
now negative), µ−(k) = 1 gives us the mass Ma for a2 > 0 and d = 1, 2. For d � 3 there are
no mass spectral points above or below the first band.

An estimate of the mass Mb is given in [6, 7]. An estimate for the massMa can be derived.

3. Nonlocality versus locality

To separate the effects of local and nonlocal, nonlinear terms on the spectrum of a lattice
quantum field model, we consider perturbations of a quantized discrete string with a mass
term, on the Z

d lattice, and continuous time. The Hamiltonian is

H = −1

2

∑
�x∈Z

d

δ2

δϕ(�x)2
+

1

2

∑
�x∈Z

d

ϕ(�x)[(−� + m2)ϕ](�x) + W(ϕ). (11)

where W(ϕ) is an interaction potential.
Hamiltonian (11) is the generator of a continuous-time semi-group and the correlation

functions are obtained by a Feynman–Kac formula as in the previous section. WithW = 0, the
correlation functions are Gaussian with covariance given now by C = [−d/dt2 −� + m2]−1.
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The spectrum for the corresponding generator is as in the case of the lattice stochastic model
but with the one-particle dispersion curve

E0( �p) =

 d∑

j=1

2(1 − cospj ) + m2




1/2

with mass m > 0. As before, there is a band structure. For large m, the first band has a lower
envelope given by E↓

0,2( �p) = 2
{∑d

j=1 2[1 − cos(pj /2)] +m2
}1/2

, with �p = �p1 + �p2 being the
total spatial field momentum (note that each particle has momentum �p/2), and upper envelope
E

↑
0,2( �p) = 2

{∑d
j=1 2[1 + cos(pj /2)] + m2

}1/2
.

Putting in W(ϕ) a λ6
∑

�x : ϕ(�x)6 :, λ6 > 0, term to ensure stability, we consider
W(ϕ) = V (ϕ) + λ6

∑
�x : ϕ(�x)6 :, where V (ϕ) is taken to be V1(ϕ) = λ1

∑
�x : ϕ(�x)4 :,

V2(ϕ) = λ2
∑

�x : ϕ(�x)3 [−�ϕ] (�x) : or V3(ϕ) = λ3
∑

�x : ϕ(�x)2[−�ϕ2](�x) :.
In any of the different models above, the two-point function and the one-particle

dispersion curve obey similar properties to the stochastic model. In particular, we have
Eλ( �p) = m2 + O(λ2), for λ here being λ1, λ2 or λ3, depending on the case. Also, 2Eλ( �p)
denotes the two-particle threshold, i.e. the beginning of the first band, etc.

The complete continuous model with V1 and d = 1 is studied in [11, 15]. A bound state
is shown to exist below the two-particle threshold (beginning of the infinite band).

We now determine the mass spectrum for the cases V1, V2 and V3.

Case V1(ϕ) = λ1
∑

�x : ϕ(�x)4 :
For the ladder approximation to Kλ, repeating the steps from the last section, suppressing the
λ sub-indices henceforth and up to unimportant positive multiplicative constants, we find

L1(x1, x2, x3, x4) = −λ1δ(x2 − x1)δ(x3 − x1)δ(x4 − x1)

so that in terms of the relative mixed coordinates (5)

L1(ξ, η, τ ) = −λ1δ(ξ)δ(η)δ(τ ).

Hence L̃1(p, q, k) = −λ1.
For �k = �0, the B–S equation for D̃(p, q, k0) becomes, omitting the k0 dependence, and

setting λ′
1 = (2π)−2(d+1)λ1,

D̃(p, q) = r0(p)δ(p + q)− λ′
1r0(q)

∫
D̃(p, u) du.

Integrating over q, we solve
∫
D̃(p, u) du so that

D̃(p, q) = r0(p)δ(p + q) + r0(p)
−λ′

1

1 + λ′
1

∫
r0(u) du

r0(q).

A possible mass point outside the band can occur when the denominator is zero, i.e. we have
the condition

−λ′
1

∫
r0(q) dq = 1 = −λ′

1

∫
G( �q, k0) d �q ≡ −λ′

1I0 (12)

with G( �q, k0) given by (10).
Taking into account the properties of the two-point function S̃(q), and hence of G( �q, k0),

we see that for all small |λ1| > 0 there is a bound state below the band for the case λ1 < 0
and a bound state above the band for the case λ1 > 0, if d = 1, 2. For d � 3, no state exists
below or in an interval extending from above the band (if λ1 > 0) to near the three-particle
threshold 3Eλ( �p).
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Case V2(ϕ) = λ2
∑

�x : ϕ(�x)3 [−�ϕ] (�x) :
Proceeding similarly, we find

L2(x1, x2, x3, x4) = −λ2
[
δ(x3 − x1)δ(x4 − x1)(−�)(�x1, �x2)δ

(
x0

1 − x0
2

)
+ δ(x2 − x1)δ(x3 − x2)(−�)(�x4, �x3)δ

(
x0

4 − x0
3

)]
so that, after passing to relative coordinates, taking the Fourier transform and setting �k = �0,
we obtain L̃2(p, q, k

0) = −λ2[−�̃( �p) − �̃( �q)]. The B–S equation and its solution have the
form of equations (7) and (8), with E0( �p) replaced by −�̃( �p). Thus, a mass point can occur
if, with λ′

2 = (2π)−2(d+1)λ2,

λ′
2

[
I1 ± (I0I2)

1/2] = 1 (13)

with I0 given in (12) and

I1,2 =
∫

G( �q, k0)[−�̃( �q)]1,2 d �q.
Approaching 2Eλ( �p) from below (I0, I1 and I2 are positive), for d = 1, 2 and if λ2 > 0,

there is a bound state, taking the plus sign in (13), since I0 is singular. I1 and I2 are not
singular. Approaching the band from above (I0, I1 and I2 are negative), there is also a state
again taking the plus sign. Similarly, for λ2 < 0, and taking the minus sign in (13), both states
occur. However, for d � 3, there is no mass spectrum below or above the band.

Case V3(ϕ) = λ3
∑

�x : ϕ(�x)2[−�ϕ2](�x) :
We find

L3(x1, x2, x3, x4) = −λ3
[
δ(x4 − x2)δ(x3 − x1)(−�)(�x1, �x2)δ

(
x0

1 − x0
2

)
+ δ(x3 − x2)δ(x4 − x1)(−�)(�x1, �x2)δ

(
x0

1 − x0
2

)
+ δ(x4 − x3)δ(x2 − x1)(−�)(�x1, �x3)δ

(
x0

1 − x0
3

)]
and thus, setting �k = �0, L̃3(p, q, k

0) = −λ3[−�̃( �p− �q)− �̃(�0)] = −λ3(−�̃)( �p− �q) noting
that �̃(�0) = 0.

Now, consider d = 1; the cases d > 1 being similar. Since (−�̃)( �p − �u) =
1 − cos(p − u) = 1 − cosp cosu − sinp sinu, the �k = �0 B–S equation for D̃(p, q, k0)

becomes, with λ′
3 = (2π)−2(d+1)λ3,

D̃(p, q) = r0(p)δ(p + q)− λ′
3r0(q)

∫
D̃(p, u) du + λ′

3r0(q)c( �q)
∫

D̃(p, u)c(�u) du (14)

where c( �q) = cos q1.
Multiplying successively equation (14) by 1 and c( �q), and integrating over q gives two

equations for X(p) ≡ ∫
D̃(p, u) du and Y (p) ≡ ∫

D̃(p, u)c(�u) du. Solving for X(p) and
Y (p), we get

D̃(p, q) = r0(p)δ(p + q) − λ′
3

[
(1 − I0)(1 + I2) + I 2

1

]−1
r0(p)r0(q)

× [1 + I2 − I1 (c(�p) + c( �q)) + (I0 − 1)c( �p)c( �q)]
where

I0,1,2 = −λ′
3

∫
G( �q, k0)[c( �q)]0,1,2 d �q.

Approaching the band from above or below, I0, I1 and I2 as well as I0I2 − I 2
1 become

singular but I0 − I2 does not. For d = 2, similar behaviour occurs. However, the determining
equation is unreliable since we have kept only O(λ3) terms in the B–S kernel, and the product
of two I is O(

λ2
3

)
. Thus, we draw no conclusions about the existence or non-existence of the

mass spectrum, for the cases d = 1, 2. If d � 3, I0, I1 and I2 are all finite, and there is no
spectrum outside the band.
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4. Conclusions

We have determined the effect on the spectrum of a quantum Z
d lattice model Hamiltonian from

zero up to near the three-particle threshold due to local and nonlocal, nonlinear interactions in
a ladder approximation. In comparison with the case of the Hamiltonian associated with the
Ginzburg–Landau stochastic model on the lattice treated previously in [6–8], the qualitative
effect of a local λ1 : ϕ(�x)4 : term is the same, namely it produces a bound state below the
band for λ1 < 0 and a state above the band for λ1 > 0 in d = 1, 2. This behaviour comes
about as the nonlocal term in the Ginzburg–Landau Hamiltonian is λ : P ′(ϕ(�x))(−�ϕ)(�x) :,
with mass m2/2 large, so the local part dominates and masks the effect of the nonlocality. On
the other hand, the effect of a λ2 : ϕ3(�x)(−�ϕ)(�x) : nonlocal nonlinearity produces a state
both below and above the band for d = 1, 2, regardless of the sign of λ2. In d = 1, 2, a
higher order treatment is needed to see the effect of a λ3 : ϕ2(�x)(−�ϕ2)(�x) : term. For all
the above perturbations, if d � 3, there are no states below the first band or above it up to near
the three-particle threshold. What about the effect of higher order (greater than four) nonlocal
monomial Wick ordered interactions? In the ladder approximation, these do not contribute.

It would be interesting to consider the problem for the nonweak coupling regime, including
the region with broken symmetry. It is also of interest to determine nonlocal, nonlinear effects
for classical wave equation large time asymptotics, their quantum versions, both in the scalar
and multicomponent versions. Particularly, it is worthwhile to investigate the existence of
degeneracies in the multicomponent case and the existence of soliton and soliton–antisoliton
solutions in the classical wave case.
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